Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 6(18): 5267-5278, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35404997

RESUMO

Administration of ex vivo expanded somatic myeloid progenitors has been explored as a way to facilitate a more rapid myeloid recovery and improve overall survival after myeloablation. Recent advances in induced pluripotent stem cell (iPSC) technologies have created alternative platforms for supplying off-the-shelf immunologically compatible myeloid progenitors, including cellular products derived from major histocompatibility complex (MHC) homozygous superdonors, potentially increasing the availability of MHC-matching cells and maximizing the utility of stem cell banking. However, the teratogenic and tumorigenic potential of iPSC-derived progenitor cells and whether they will induce alloreactive antibodies upon transfer remain unclear. We evaluated the safety and efficacy of using CD34+CD45+ hematopoietic progenitors derived from MHC homozygous iPSCs (iHPs) to treat cytopenia after myeloablative hematopoietic stem cell (HSC) transplantation in a Mauritian cynomolgus macaque (MCM) nonhuman primate (NHP) model. We demonstrated that infusion of iHPs was well tolerated and safe, observing no teratomas or tumors in the MCMs up to 1 year after HSC transplantation and iHP infusion. Importantly, the iHPs also did not induce significant levels of alloantibodies in MHC-matched or -mismatched immunocompetent MCMs, even after increasing MHC expression on iHPs with interferon-γ. These results support the feasibility of iHP use in the setting of myeloablation and suggest that iHP products pose a low risk of inducing alloreactive antibodies.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Animais , Antígenos CD34 , Interferon gama , Isoanticorpos , Macaca fascicularis , Complexo Principal de Histocompatibilidade
2.
J Am Assoc Lab Anim Sci ; 59(6): 681-686, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32878681

RESUMO

The objective of this study was to optimize cryopreservation of sperm from Mauritian cynomolgus macaques (MCM) in defined conditions. Sperm viability and motility were compared between sperm cryopreserved in chemically-defined freezing media with variable osmolarity and the presence of either ethylene glycol or glycerol. The highest percentage viability (after freeze-thaw) was seen in sperm samples that were cryopreserved in medium with an osmolarity of 310 mOsm, while higher osmolarities markedly decreased sperm viability. Ethylene glycol and glycerol at concentrations of 4.6% and 5%, respectively, preserved sperm viability to an equivalent degree. Although higher motility rates and higher straight-line velocities were observed in sperm samples frozen in glycerol compared with ethylene glycol, these differences were not statistically significant. Thawed sperm frozen in defined conditions with glycerol were capable of fertilizing MCM oocytes in vitro, with development to the blastocyst stage. The protocol described here provides an effective method for cryopreservation of sperm to facilitate subsequent in vitro fertilization and genome editing of embryos in MCM species.


Assuntos
Macaca fascicularis , Preservação do Sêmen/veterinária , Animais , Criopreservação/métodos , Crioprotetores/química , Etilenoglicol/química , Feminino , Fertilização in vitro/veterinária , Glicerol/química , Masculino , Preservação do Sêmen/métodos , Espermatozoides/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...